
A COEFFICIENT INEQUALITY FOR SCHLICHT FUNCTIONS 

BY 

P.  R.  GARABEDIAN AND K.   SCHIFFER 

TECHNICAL REPORT NO.  24 

JUNE 25,   1954- 

PREPARED UNDER CONTRACT Nonr 225(ll) 
(NR-041-086) 

FOR 

OFFICE OF NAVAL RESEARCH 

APPLIED MATHEMATICS AND STATISTICS LABORATORY 

STANFORD UNIVERSITY 

STANFORD, CALIFORNIA 



THIS REPORT HA8 BEEN DELIMITED 

AND CLEARED FOR PUBLIC REL1ASE 

UNDER DOD DIRECTIVE 5200,20 AND 

NO RESTRICTIONS ARE IMPOSED UPON 

ITS U8E AND DISCLOSURE. 

DISTRIBUTION STATEMENT A 

APPROVED FOR PUBLIC RELEASEJ 

DISTRIBUTION UNLIMITED. 



r 

• 

t 

A COEFFICIENT INEQUALITY FOR SCHLICHT FUNCTIONS 

By 

P. R. Garabedian and If. Schiffer 

1.  Introduction. 

A great part of the theory of conformal mapping has been built around 

the study of the coefficients a of functions n 

(1) f(z)  = 2+ a2z2+ a-z3+ a,z^+ ... 

schlicbt in the interior |zl< 1 of the unit circle and the coefficients b 1    ' n 

of functions 

b,     b2    b 

(2) g(z)   ->+b*Y*2+3+'" 
z        z 

aohlicht in the exterior  |z|> 1 of the unit circle.    The estimates of these 

coefficients which have been obtained fall essentially  into two classes, 

namely,  those which follow  in a  natural way from the area theorem 

(3) 1 >  |bj2*2|fcj|a*3|b3|
£* ... 

or its variants,  and those,  such as Loewner's theorem |a,l< 3» which cannot 

be derived from such elementary considerations.    While most of the useful 

distortion theorems of conformal rcapping are consequences of -one area 

theorem  (3),  there is nevertheless a great interest attached to the more 

remote class of inequalities because of the unanswered  status of the 

Bieberbach coniecture la   |<n. I   n I - 
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The principal result of the present paper is the sharp inequality 

u) lM4 + e"6     > 
which belongs in this latter category. For asilier coefficients, the 

estimates lb, l< 1 and | an | < 2 follow quickly from (3), while even the more 

difficult inequality jb,I< 2/3 can be deduced from a generalized area 

principle. Next in order of difficulty comes the theoiem ja,l<3 due to 

Lcewner [3"l, for which we shall give here a new and particularly simple 

proof. Thus the bound (4) on to* I represents possibly the farthest point 

yet, reached in estimating the higher coefficients of schlicht functions. 

Our method of proving (4) is based on the differential equation for 

the schlicht function maximizing |b j which results Irom an application of 

interior variations. We suppose that by now the precise derivation of such 

differential equations is familiar to the student of schlicht functions. Our 

contribution lies rather in determining the correct values of the parameters 

which appear in the differential equation, and this permits us to integrate 

the equation in closed form and find the largest value of Jb I. Underlying 

cur manipulations are a set of identities involving elliptic integrals which 

determine the parameters in the differential equation in such a way that 

its solution is a schlicht function. The main difficulties of the investi- 

gation center about a successful analysis of these identities.  It is because 

the corx'esponding identities for the case of higher coefficients involve 

hypsrelliptic integrals that the Bieberbach conjecture la |<n remains 

an unsettled problem. 

A special significance attaches to the 3harp estimate (4) because 

this result forces rejecion of the earlier conjecture [9"! that 

(5) lbnUn^l    '     a-1,2,3,..., 

u 
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with equality holding for essentially only the function 
, 1 

u 

/y\ / \  / n+1. „ . -n-l\n+l 
(6) g(z) - (a  + 2 + z   ) 

While this mapping function is a solution of the differential equation and 

the associated parameter relations, we succeed nevertheless in finding, for 

n= 3, another solution with a larger third coefficient.  Proof of (4) 

consists merely in showing that this new solution and (6) are actually the 

only functions fulfilling the requirements upon an extremal mapping.  The 

existence of superfluous solutions of the differential equations again 

illustrates the difficulties inherent in the coefficient problem for schlicht 

functions and indicates that a naive approach through conjectures based on 

familiar elementary maps is of no avail. We emphasize, however, that our 

advance here does not cast doubt on the Bieberbach conjecture, since we 

obtain an extremal function for (4) which has real coefficients .and the 

Bieberbach conjecture has already been established for functions with real 

coefficients. 

In the next section, we illustrate our fundamental technique by giving 

a new proof of Loewner's theorem, based on the differential equation for the 

extremal function. The sections following are devoted to the more tedious 

proof of the inequality (4). Closing portions of the paper take up 

corollaries of the principal theorem, su">h as the inequalities 

(7) Re(h-n\X   <3    ,    Re-fb2^2b1X < 2 

or  indicate results which fit appropriately within the broader scope of 

our  investigation. 
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2.  Proof that |a,J < 3. 

Each schlicht function f(z) of the form (l) generates a schlicht 

function g(z) of the form (2) according to the rule 
2 

(8) g(z) = j(37^= «-v 
a2-a3 , 

If the behavior of g(z) on the unit circle is sufficiently regular, we 

find by the residue theorem 

i 
|zl=l 

or, using (8) and setting z=e , 

2TT 

(10) "*2 " bo = 2TF J  ffe dG 
0 

With t= g(z^ we can consider the image P in the t-plane of the unit circle 

| 3[ = 1 and we can interpret the measure 

|        (ii) ^Ff?*9 

in the usual electrostatic sense. Thus we think of du as the natural 
• 

charge distribution on I'.  It is a non-negative distribution of total 

charge 1, and we therefore call the coefficient 

(12) bo= Jtd^ 
P 

the conformal centroid, or centroid, of the set P. Formula (10) sho7?s that 

2 
the coefficient a? is related to the centroid of P by 

(13) -a2 » J td I4 

and thus it is clear that -a- is a point insids the convex hull of I . 

With these preliminaries behind us, we prorsed to the problem of 

maximiz imizing |a^|-  We write 
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(U) w = f(z) 

and we choose for f(z), without loss of generality, the extremal function 

maximizing |a,| such that a_>0.     It follows from the method of interior 

variation that the extremal function  (14)  satisfies the ordinary differential 

equation [U,  5,  7, 8] 

w       w z        z ' 

where the parenthesis on the right is non-negative for | z| = 1.    Thus if we 

put 

we find that the image   P in the t-plane of the unit circle |z|= 1 consists 

of analytic arcs  satisfying the differential equation 

0t+2a2>l/2        ) (17) Rej ^ dty=0 

The eonformal transformation 

r* (t+2a„)1/2 

(IB) H = l  r4r  dt 

i      * ' 
performs a univalent map of either of the half-planes bounded by the line 

L through the points 0 and -2a~ in the t-plane onto a polygonal region R of 

the H-plane bounded by a linear ray from the origin, a finite line segment 

t 

joining this ray at the origin under an angle of 90 with respect to the 

region, and a second infinite linear ray separating from the other end of the 

segment at an angle of 270 with respect to the region. The expression (18) 

is, in fact, merely a Schwarz- Christoffel transformation of a rotated half- 

plane. Now the arcs T in the t-plane correspond to a segment of the 
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imaginary axis in the E-piane, according to the differential equation (17). 

Furthermore, if this segment, starting out from the origin, enters one of 

the above regions R, it must remain there, since R consists of the sum of 

two quadrants. Thus the curve I-1 must either coincide with the line L 

between 0 and -2a„, possibly forking at -2a~, or else, if we overlook the 

origin, i must lie entirely interior to one of the half-planes bounded 

by L. We shall exclude thia latter possibility. 

Indeed, if P lies in the interior of one of the two half-planes 

bounded by L, then so does its centroid with respect to the natural charge 

distribution (ll). But from the explicit calculation (13)> the centroid 

lies on the line L, halfway between 0 and -2a9. Thus I can lie in no 

such half-plane and must actually coincide with L between 0 and -2a-, with 

| a possible fork at the latter point. 
i 1 

To exclude the fork, we notice that such a configuration would entail 

two end-points of i    corresponding to two double zeros of the right-hand 

side of the differential equation (ij).  Thus we would have 

2a 
(19) (\  + ~ + 2a3

+2a2z+ z
2) - (J + &2 > z)2       , 

z 
whence 

t 

(20) 2a_ = a?+ 2 
5        * 

Since I a~I < 2, this leads to the conclusion 
,  |2 

(21) |a3| < —f— 
+ 1 < 3  • 

For equali1',." to hold in (21) we must require Ja2|' = 2, and this is true 

essentially only for the Koebe slit mapping 

(22) w = —s—3 
(1-z)2 
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Notice that (20) follows even when P does not fork at -2a2, since in that 

case the right-hand side of (15) must have a quadruple root there. 

This completes our proof of Loewner's theorem. It is based on an 

appropriate use of the identity (13), obtained from the schlicht character 

of the mapping (14.), and it exploits in an essential way a geometrical 

analysis of the behavior of solutions of the differential equation (17). 

3.  The Inequality for b_. 

We proceed to the proof of (A)  in several stages. Since the differential 

equation for the extremal function g(z) maximizing /b J and normalized so 

that b, > 0 is less familiar than the analogous differential equations for 

functions schlicht in the interior of the unit circle, we sketch a derivation 

of this equation. We stress that the derivation presented here is heuristic, 

and we refer to the literature for an exact treatment [7, 10J. 

The extremal function 

(23) t «  g(z) 

maps the unit circle |z|= 1 onto a system of curves P. There is no loss of 

generality if we assume throughout that b = 0, since this can be achieved 

3 imply by a translation of I . Let Pj be a small arc of P  of outer mapping 

radius O  and let t be a point of P-.  Then there is a conformal mapping 

of the form 

CO2 G   p3 

(24) £ = t-t  *C   0 +7TT-T • s *   ... o    or     (t-t  )       (t_fc y> 
c * 

takirr the exterior of P into the exterior \*C \ > O  of the circle of radius 

0 in the ^-plane. We introduce the special functions 

(25) g - X  • 
? 

I 

1 
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with 

(26) (B1| < 1 

which are schlicht in l^-l > p. The coefficient B.. can be chosen arbitrarily 

except for the condition (26). It is well known that for each n the coefficients 

C are bounded uniformly in O, 

By composition of the mappings (23), (24), and (25), we construct for 

f z\ > 1 the schlicht function 

*       bl  b?  N (C +B,)/02 

(27) g (z) - z+^ • -f • -3- ...-V0or  ^;
r + o(p2) 

z   z °    o      ' 

. z.t ,G ^VWP
2 + 

b2no(Cl^Bl^2 + V^o-h^V
8!^2 

0 o p + ; 3 + "^ 3 z 

j * ... + o(p2) 

From the extremal property of g(z) it follows that 

:• (28) lv(to-V(vBi)p2+o(P2)^ ib3l    • 
We let p —>0 and we note that C,—>-e ^ where q>  is the angle of inclination 

of the tangent to P at t .  Since b_>0, we derive from (28) in the limit 

as p—>0  the inequality 

(29) Rer(t
2-b1)(Bre2icP)l < 0 

where B, is any complex number satisfying (26). Because of the freedom in 

the choice of B.. , the variational condition (29) yields the relation 

(30) (t2-bjdt2 :> 0 o 1  o — 

for the differential element dt of V  at the point t . This result is o o 

actually a differential equation for the system of arcs P. 

We can derive from (30) a differential equation for the extremal function 

g(z).  Consider the expression 

A 

1 
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(31)     z2g'(z)2r-:z)2-b1l = z
A-blZ

2-2b2z-4b3+...   , 

which is an analytic function of z in the exterior of the unit circle, 

except for the indicated pole at infinity. According to (30), this function 

must be real for |z|= 1, and hence we can continue it analytically into the 

interior of the unit circle by the Schwarz reflection principle. The f uiction 

has a pole at the origin determined by the expansion (3l), and hence we are 

able to calculate it explicitly and obtain 

(32) ,2^(g2-v-2'V-2v-ib
3-

2-r-^*\ • 
dz z   z 

This is the desired differential equation for the schlicht function g, and 

we note only that, according to (30), the right-hand side must be non-positive 

for (z{= 1. 

We turn to the rigorous integration of (32). There are three character- 

istically different cases to be considered,  (i) Tbs curves P contain both 

the square roots of b.. In general, P will fork at these points and will 

have four end-points, each of which corresponds to a double root of the right- 

hand side of (32) on the unit circle |z|= 1. However, P might not fork and 

might even terminate at a critical point, but (32) will still have four 

double roots whenever P contains the two square roots of b..  (ii) The 

curves 1    contain precisely one of the square roots of b,; P will have, in 

general, three end-points, so that the right-hand side of (32) has only 

thr^e double roots on | z |= 1 and the two remaining roots lie at inverse 

points inside and outside the unit circle,  (iii) The set P does not contain 

either of the square roots of b. and hence consists of a simple arc without 

forks and with only two end-points, so that the right-hand side of (32) has 

two double roots and four simple roots.  In this l&st case, the integration 

i 
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of (32) involves elliptic integrals, whereas in tble first two cases only 

elementary integrals are required. 

In later sections of the paper we shall prove that cases (ii) and (iii) 

can be excluded. We study in this section only case (i) and we determine the 

8ctu?«l extremal function which maximizes |b, |. 

In case (i), the right-hand side of (32) has four double roots and is 

a perfect square, whence 

(33)    z*-blZ
2-2b2z-4b3- 2i - i • i - (s

2- ^ . i,2 
z   z z 

and ~ 

(3A) b2 = 0  ,  bj-i-ji    . 

The coefficient b, must be pure imaginary, since both sides of (33) »re 

non-positive. We can now take the square root of both sides of (32) and 

integrate to obtain 

g(g
2-b1)

1/2  b,    ^(g2-\)l/2 2 b, 

(35) § ~ 2 loe TT^    =   T + r2-Tloez+K   > b. <£z 

where K is a constant of integration. 

In order to evaluate K, we expand (35) about the point at infinity in 

the z-plane, using (2) and remembering that we took b = 0. By noting that 

the constant terras on both sides of the equation must be the same, we find 

that 

(36) *'l\'ltl<>*£ 
7—1 l/2 Since P passes through the point b.' , there exists a value z of z on the 

unit circle )z|= 1 such that 

(37)        g(zQ) - b{/Z 

Substitution of this value of z into (35) yields the additional relation 
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2       . 

(38)        0-f • -4-^logi0*I 
2z o 

The terms in (38) involving z are real, and hence K is real. Therefore 

by (36) we have, since b, is pure imaginary, 

|b,| 
(39)        3^+ bx log -j

8- " 0 

Using again the imaginary character of b..,  we deduce from equation (39) 

that either b.* 0 or else | h, I = 4©     and 

(4.0) To    = 4ie"3 

The root b.= 0 of (39) leads to the solution (6) of (32), with n= 3, and 

b = l/2. On the other hand, the value (40) for b. leads by (34) to the 

value 

(41) b3 = 2 + e"6 

of the third coefficient of g(z). This value is the larger of the two, and 

thus the function maximizing |b_| must be the one defined, according to 

(35), by the implicit relation 

(42) g(g2-4ie-V/2- 4ie-3 log ^ii^I^l   m   Z. i + 6ie"3 . 
z 

The extremal function (42) maps the exterior of the unit circle in the 

z-plane onto the exterior of a system of arcs P which consists of a line 

- ? segment joining the two square roots of 4ie  and four analytic arcs forking 

from these square roots at angles of 120 . Wo remark that an extremal 

function with real coefficients can be obtained from the present one by- 

rotation, and, indeed, e     g(z©     ) is such a function. However, 

its third coefficient is negative. 

In order to establish that (41) is actually the largest value of b_, we 

must exclude the above cases (ii) and (iii). This will be done in the next 
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sections by a method based on the knowledge that for schlicht solutions 

of (32), the singular points of the differential equation in the z-plane 

must correspond to the singular points in the t-plane. 

U.  Exclusion of Elliptic Integrals. 

We establish in this section that there are no schlicht solutions of 

(32) in the case (iii) where the hypothesis is that the image P in the 

t-plane of the unit circle \z\= 1 consists of a single analytic arc and does 

not pass through the branch points of (30) at the square roots of b.. A'tual 

integration of the right-hand side of (32) in this case would involve the 

use of elliptic integrals, and the success of our treatment stems from the 

fact that we are able to avoid such a step and work only with the left-hand 

side of the equation, or, more precisely, with (30). Our first remark is 

that we do not lose any generality if we suppose that the z-plane and the 

t-plane have been rotated so that b->0, while b, is no longer necessarily 

real. This new normalization is more convenient for our study of (30), but 

we notice that (30) must now be replaced by the more general differential 

equation 

(A3)        e2ic<(t2-b1)dt
2 > 0 

for the arc P, where oC  is a fixed real parameter depending on the angle of 

rotation. The normalization b = 0, made previously, is not altered by the 

rotation of coordinates. 

We introduce the integral 
t 

(U) H = J (t2--0l)
1/2 dt 

0 

and we point out that the differential equation (A3) merely states that P 

is the image by the transformation (AA) of a line segment L in the H-plane 

"J 
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inclined at an angle -<X with the real axis.    This interpretation of  (A3) 

l /? i /? 
permits us to show that   i    cuts tho real axis between -b,'     and •b,'   .    In 

•' 
fact  (44), viewad as a Schwarz-Christoffel transformation, maps the upper 

half of the t-plane onto the exterior of a semi-infinite strip of the form 

(45) Re H > 0       ,       -h < Ira H < h    , 

where , l/2 

(46) h = Im f       (t2-^)1^2 At 

0 

In order to establish that P cuts the real axis between -b".,'  and •b.' , it 

suffices to prove that P cuts both the real axis and the imaginary axis. 

For if this is true, then the line segment L in the H-plane corresponding to 

P must cut both the boundary of the semi-infinite 3trip (45) and the negative 

real axis in the H-plane, since these map by (44) into the real and imaginary 

axes in the t-plane. Any line segment L with the above properties has to 

intersect the segment Re H= 0, -h< Ira H< h, and since this segment corresponds 

to the interval between -br/  and +b,  , the arc P must cut that interval. 

It remains, then, to show that P cuts both the real axis and the 

imaginary axis. But, in the notation of formulas (9) and (12), we interpret 

the normalization b = 0 to mean that the centrcid b of V  lies at the origin, 

or in other words 

(47) b = /tdp = 0 
P 

This can only occur if P cuts both coordinate axes, and thus our lemma is 

established. A special application of this argument shows in addition that 

b1/o. 

We must consider all positions of the arc V which are consistent with 

l/2     l/2 the properties that it cuts the real axis between -D.'  and +b,' , that it 

L 
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has outer mapping radius 1, and that its centroid lies at the origin. We 

shall prove that these properties imply that P passes through the origin 

and is symmetric in the origin. It is evident that the converse is true, 

namely, that an arc which satisfies the differential equation (4-3) and is 

symmetric in the origin must have its centroid at the origin. Thus our 

proof can be carried out by establishing ths uniqueness for each value 

of the parameter oC  of this solution of the equation (47). 

Ao a preliminary, we derive variational formulas for the capacity ft 

and centroid b of the curve P. We 3hall need such formulas for a shift 

of P corresponding to infinitesimal translation and magnification of the 

* 
image segment L in the H-plane. We denote the shifted segment by L and 

1 we let V   denote the correspondingly varied arc in the t-plan;. We shall 

use addition of an asterisk to indicate all quantities associated with the 

* 
varied configuration. The infinitesimal transformation carrying L into L 

can be written in the form 

(48)      H* - {i*e1)n*e2     , 

where (r, is a small real number and 6~ is a small complex number. We set 

6 = max (l£1l, |€2|). 

fle denote by p(t) the analytic function whose real part is the Green's 

function of the exterior of P with pole at infinity. Thus near infinity 

(49) Re p(t) = log |t |- tf + °(TtT)  ' 

and e° is the outer mapping radius of P. We let (p(t)  be the function, 

analytic in the exterior of P, which has a pole of the form 

(50) Cp(t) = t+co*^ + -§ + ... 

I at infinity and which has real boundary values on P. Similarly, 4^(t) is 

defined to be ths function, analytic in the exterior of i, which has a pole 

s t 
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of the form 
d.      d 

(51) HW - **do+ t 2 +  '•• 

at infinity and which has imaginary boundary values on   P.    The centroid b 

of   P can be expressed in terms of the expansions  (50) and  (51) by the 

formula 

(52) bQ = -Re dQ-i  Iraco=   fVif2       , 

since,  in terms of the mapping (23), 

(53) Cp= z + - + real const.     , 

(54-) T = z-- + imaginary const. z 

Variational formulas for the capacity $ and centroid b can be found 

using the domain functions p, cp,  and Y*    ^e denote by t (t) the infinitesimal 

transformation of P onto P induced by (4A) and (4-8). By the residue theorem, 

iie find 

(55) Zf*- tf = Re ~r  d)[p(t)-p*(t)ldp(t)  , 

where the path of integration is a closed curve surrounding P.  Since p(t) 

and p (t (t)) are pure imaginary on P, we can rewrite (55) i& "the form 

(56) 0*- j=Re^T £ [p*(t*)-p*(t)]dp(t)  . 

We wish to evaluate the integral over the corresponding path in the H-plane, 

and thus we replace t as the independent variable by H to obtain 

(5?) fl"*-y « Re^— $[p*(H*)-P*(H)]dP(H)  , 

where we have used a loose notation that doe3 not indicate explicitly the 

change in the functional form of p under the transformation from the t-plane 

to the H-plane. 

From (4.8) and (57) we derive the variational formula 

(58) X*~ tf  = Re ^7   J(eiH+62)p
/(H)2dH+o(€ )  , 

L 
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where the path of integration is a  curve in the H-plane enclosing the line 

segment L.     In a similar way,  we derive from the expressions 

(59) (31"^1 = Re2TTi $EWt>-^(t)]dp(t)     , 

(60) $f fe = Im ZTTI ^Ccp(t)-Cp*(t)]dp(t) 

the variational formulas 

(61) p*- ^- Rs^;  ^(G1H-e2)^'(H)p/(H)dH+o(e)    , 

(62) p*-^2 = Im^fi  |'(eiH-€2)cp'(H)p/(H)clH+o(€) 

for the real and imaginary parts 6, and 62 of the eentroid b of i. 

Formula (58) can be simplified by evaluating the integral in the t-plane 

and by deforming the contour of integration into a path which consists of 

two small circles Cl    and w? about the end-points t, and t_ of P and of 

the two edges of P  joining these circles. In order to calculate the 

l/2 
integrals over Q^ and Q^, we introduce the local uniformizers CO. = 2(t-t.) 

•i /o 

and CiX = 2(t-t?)  . We let the radii of the eirclss O.    and Cl„  tend to zero. 

The limit cf the integral over O, is Re 4 St, L7T~) r> k" 1,2, where St, 
L     k  J 

is the displacement of t, under the shift (4.8). The integral over the two 

edges of P has the limiting value (2"fT)  J (dp/ d~V)    oVds, where V is 
V 

the inner normal and s is the arc length along P, where the integration is 

carried out along both edges of \  , and where S"^ is the normal displacement 

of P under the shift (4.8). We denote by 3p/3V, the normal derivative of 

the function p la the plane of the uniformizer 60 and we denote by bV. 

the tangential projection with respect to \    of the shift St. , k= 1,2. 

Thus we obtain from (?8) the Hadamard formula 

(63)    Sy = -]~ / (J^)2 Svds- (^r)2 Sv1+ (^r)
2 $*2*o(e) , 

I 12 
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and similarly, in an analogous notation, (6l) and (62) yield 

(64)     oPi-^r J f^-fy b-Vds--^--g— 5^1+_fc-fc— gy2 

+ o(e) , 

i^;   b^    2TTI J a^   ay d^db   i ay.   a^, a^i  i a-^0 ^x   ^2 

* o(e)   , 

where 0$ = 2f - #, 6 (5n = (S,~ &., and Sp,= (65- &2* Notice that the 

derivatives dp/d~y }   d'V/d^V   and -idcp/S^ are actually real number?. 

We attempt to choose the arc 1 as a solution of the differential 

equation (4.3) which cuts between -b.  and *b-'  in such a way that the 

three equations 

(66) tf = 0  ,   (51 - 0  ,   (32 = 0 

are fulfilled.  Given the upper end-point t- of P, the equation tf = 0 

clearly determines the lower end-point t0, since # is a monotonic domain 

functional. We now establish that, along a prescribed curve solving (43), 

the equation u?~ 0 determines the upper end-point t.. uniquely.  This is 

a consequence of the variational formula (65) because, as we shall prove in 

a moment, 

(67) 1 T5 >0    >    i ^fc * °   • 
The inequalities (67) show that as t, rises along a solution of (43), and 

as t_ follows t1 so that # 
a0, the quantity jS2 increases monotonically. 

Thus, indeed, jS> vanishes only once and t,., is uniquely determined. 

It remains to establish the inequalities (67). We prove first that 

our solution of (43) is a curve which intersects each horizontal line just 

once.  Indeed. If such a curve intersects a horizontal line iL   more than once. 
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it intersects it essentially at least three times, and between three 

intersections on the horizontal line Z  there will be two points where 

Im Ve Hi is stationary, by Rolle's theorem. There is on the same horizontal 

line X,  an additional stationary value of Im i e Hi which occurs between 

the two intersections with the line .£  of cne of the solutions of (4.3) 

i /2     1/2 
which forks through -b"  or +b~  . This accounts for at least three 

stationary values of ImK e ^H y on the single horizontal line _^, end at 

each such stationary point we find from differentiation of (44.) 

(68) Im e2i0((t2-b1) = 0  . 

For t on the line X > (68) reduces to a real quadratic equation, and thus 

it can have at most two roots. Thus three stationary values could not appear, 

and we have proved that a solution of (4.3) which cuts the real axis between 

l/2     ] /<. 
-b.  and +b.  must cut each horizontal line just once. 

The inequalities (67) can now be deduced from the maximum principle. 

On the slit P the function Im i op(t)-t+t, v is non-negative because 

Im -j Cp \- 0 and Imii-t. |<0 there. Hence, by the maximum principle, this 

function is positive in the exterior of P, and the first inequality (67) 

fellows by differentiation when we note that at t= t, we have 

Im ^Cp(t)--t+t,l = 0.  Similarly, the harmonic function Im-fcp(t)-t+t2 V 

is negative in the exterior of P because it is non-positive on P, and 

since this function vanishes at t= tp, we obtain the second inequality (6?). 

Thus we have shown that the equations # = 0, ft„= 0 determine a unique 

arc P on each level curve 

(69) Im{ei0W)^ - A 
, /_ - A-, 

cutting between •»b^/*' and •bl' . The problem is therefore to find all the 

values of /> such that p, = 0.  It is clear from (44) that when r. - 0 the 
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arc \    satisfying 7$ " 6,,= 0 passes th 'ough the origin and is symmetric in 

the origin, so that 6.= 0. We shall prove that this is the only choice 

for A which gives 6. = 0. Suppose, indeed, that there were another value 

\ of A for which we could find an arc of the level curve (69) satisfying 

all the equations (66). Then we could'vary A between 0 and A and consider 

for each intermediate value of A the arc (69) with 6 -  (2>o= ^* ^ Rolle's 

theorem, there would exist an intermediate value )\. of A for which (3-. 

would be stationary. Thus for the corresponding arc ! and an appropriate 

variation of the type (4.8) we would obtain 

(70) Stf - SjS1 - Sp2 = o . 

We shall establish that this is impossible* and therefore that the solution 

1 of (66) is unique. 

7or arbitrsry real values of X, I, and Z we consider the expression 
i 

!• (71) q(t) - Xp(t)*lM^(t)*Z S£&L       # 

We can choose X, Y, and Z so that at the end-points t, and t„ of the arc P 

satisfying (70) the conditions 

are fulfilled. This follows because Bq/S'V is proportional to a linear 
•to 

combination of the functions 1, cos 9, and sin 9 on the unit circle z= e 

in the z-plane. By the argument principle, (72) accounts for all one zeros 

of the real quantity <9q/3V. 

With this choice of X, Y, arid Z, the variationsl formulas (6^), (oU), 

and (65) yield for any shift (4.8) of P the simple relation 

(73)    XS8,-YS^>1+ZS^2 = 3ff / •fy-f* ^d3*o(6)  • 

s 

L 
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However,  the right-hand side of (73) does not vanish for the anift    SV which 

gave  (70),  because    &V is of one sign on one side of P and of the opposite 

j sign on the other side of   V  for such a shift,  and because by (72) the same 

13 true of    5q/3V.    Thus we arrive at a contradiction. 

Therefore, we conclude that the curve   T   must be symmetric in the origin. 

Next,  if the parameter   y of formula  (69) lies in the interval 0< <^ < Tr/2, 
! 

we arrive at a contradiction because of th6 identity 

(74) 2bl = ^     /   g(z)2^-    /Vdp . 
1*1-1 r 

Indeed, the left-hand side of (74.) is real and positive, whereas tbe 

right-hand side must have a positive imaginary part because P lies in the 

first and third quadrants. A similar conclusion holds when - — < o£ < 0. 

and when cxf=0 a contradiction is obtained because the two sides of (7v 

are real with opposite signs. Finally, the case o£= TT/2 must be excluded 

also, because now in (74) we have t < b,  and the right-hand side is 

actually smaller than 2b,. 

We thus obtain the final result that a single arc p without forks 

cannot occur in the solution of (32)- We have therefore established that 

the case (iii) does not appear, and it remains only to exclude the case (ii) 

in order to prove the original inquality (4). 

5•  The Equations for b, and b„. 

Our treatment of case (ii) is based on direct integration of the 

differential equation (32). In the differential equation for any coefficient 

inequality, one can always find the correct number of conditions to determine 

all the coefficients which appear by expressing th« fact that the singularities 

in the /.-plane and the t-plane have to match up. In general, this procedure 

J 
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is not feasible because it involves hyperelliptic integrals, and even in the 

case (iii) it would have led to elliptic integrals. However, we are able 

to succeed with the method in case (ii), since the integrations can be 

executed in terms of elementary integrals. 

The hypothesis in case (ii) is thet the boundary P in the t-plane 

consists of three analytic arcs forking from one of the branch points 

-b1'  or 
+b,'  at angles of 120°. Since such a system of arcs has three 

end-points, the right-hand side of (32) must have three double zeros and it 

can be represented in the form 

2b. b E.  E, 
(75) zA-b z2-2b2z-4b - — - -| + \ = (E^E,.*-^ * -|)2(z2-2rkz+k2) . 

*      z   z   z       *     z 

Since the roots of the left-hand side of (75) lie at inverse points in the 

unit circle, we must have 

(76) |le I - 1   ,   r > 1 . 

Furthermore, the coefficients of z  , z , z, and z""* on the left in (75) 

are known, so we obtain four conditions giving the coefficients E., EL, E,, 

and E, in terms of the two parameters r and k. Thus 

(77) z4-b,z2-2b0z-4b_- — - -\ * *r  - (z+rk+— • \)  (z2-2rkz+k2) . 
*   3     %       2;   z4        z   z~ 

By (77), we can express the three coefficients h,, b2, and b. in terms 

of the two real parameters r and arg k.  In particular, 

(73) 
2 2 2  -2 

bx - 3r k -k -2rk 

and b„ and b_ can be expressed in terms of b,. 

In order to determine the unknown b., we have to integrate (32) 

explicitly. By (77), we can write (32) in the form 

(79)     (g2-^)1^ = (!•# + T\ -  ^)(z2-2rkz*k2)l/2< dz 
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An equation for b, will result essentially from the fact that in the conformal 

2      2 
transformation t= g(z) one of the roots of z -2rkz+k = 0 must map into a root 

2 
of t -b.. = 0. We introduce the notation 

(80) W - (z2-2rkz+k2)l/2  , 

and we integrate (79) to obtain 

b. , 2 .   vl/2 
g(g "b-i) 

(81)  f  f log[g+(g2-b1)1/2>J[ 

-  - Y log[W+z-rk]+y log[r-~]-| (z*rk 
72 r rk   k 

) 

I 

where K is a constant of integration.  The reader can easily check (8l) by 

direct differentiation. 

The best way to evaluate K is to substitute for z in (81) a root of 

1/2 the equation W= 0; the corresponding value of g is b,  . This yields 

(82) K • log 
* ^  k2(r2-l)  * 

1   , Dl .  ,2„ 5  • 7- log(r -1) 

On the other hand, K can also be evaluated by expanding both sides of (81) 

about the point at infinity. We have thus 

(83) 
2      b        b 

&--. — - — lop '?+ K+ 0(-^-) 2        U        2.   xog    g    *    uv |g| ' 

2,2 ,2.„ r?. z~       3r k --k +2rk~        ln       /     , \       1 .       o   x n /_1_^ _ _    _  + __ log (r„1) _ _ log 2z + 0(-—•)    , 

A 

or, substituting for g the expansion (2) and letting z-^>co, 

(84) K = 

2 2 2-2   - 
3b,*3r k-k*+2rkT   b.. 
—* ; + ~ log(r-l) 

b. 
TVs   X -   /  - •» 

= -b,-rk + y log(r-l) 

The equations (78), (82), and (84) yield together a single equation for 

the determination of b,. We prefer, however, to eliminate K and b. in order 
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to obtain the one complex equation 

2—2 2 ~Z 
(35)    lL^L-  (3r*l)(r-l)log(r-l) + k-^ (3r-l)(r+l)log(r+l) 

t . ljr2-ljk2-2rk2 log[3r2_1_2r^>(3r2.l)k2.rj? 

for the two real unknowns r and arg k. Our objective is to prove that (85) 

has no solutions consistent with the hypothesis (76). 

Tt la necessary to specify which branches of the logarithms are meant 

in equation (85). This question con be discussed by a more careful examina- 

tion of our derivation of (85). We first perform rotations through 90 and 

reflections in the z-plane and the t-plane until b. lies in the first quadrant, 

I while b remains positive. Taking (82) into account, we then rewrite (8l) 

in the form 

L 

[W+z-rklb^ 
(86) gtg'MO^-b.  log-^-= ^72 

-2       - 
- v    1      rz-W-k .„/   .   ,     rk k v 
- bi lQg ; 2 lNi/2 •*<••>*- — - "2}   » 

z(r -1) ' z 

where it is now correct to take values of all the logarithms so that they 

1/2 vanish at the root z of the equations W=0, g= b.  . In order to obtain 

(85), we let z increase from this root and become infinite along the ray 

arg 1= arg k„ A difficulty is encountered when we try to locate the 

corresponding trajectory of g. 

The path covered by g obviously has the equation 

(87)        Im p(g) = arg k  . 

Also, we have the relation 

(88) p/(g) - / f^ 
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so that the trajectory (57) is always directed away from the convex hull 

1/2 of P. Therefore, this trajectory cannot cross the ray arg g = arg b  +TT 

l/2 l/2 
beyond the point -b ' , since it starts out at the point g"b.  and such a 

crossing would require an intermediate position in which its tangent coes 

not cut 1 . Our analysis shows, then, that we are permitted to use only 

values of the logarithms in (86) which have an imaginary part lying between 

-TT and +TT. Iz  follows that in the final identity (85) the values of the 

logarithms should be chosen from this same principal branch. In particular, 

the logarithms on the left in (85) are real numbers. 

Having determined the correct branch of  the logarithms in (85), we 

proceed to pare down the region of variation of the parameters r and k 

which must be considored. We note that in addition to (78), the formula 

(77) yields the expressions 

(89) b2 = (r3-r)k3*(r2^l)k 

/ftM        .    3 2 k^+k4 (90) b = r -r —j— 

for the coefficients b„ and b_. Substituting these results into the area 

theorem (3), we find 

2 kA*kU  I 2 < 1 i (91)     |3r2-l-2rkAj2+2|r3-r*(r2-l)k4|2+ 3 |r3-r' 

From (76) and  (91) we find easily that k    lies in the right half-plane and 

that Ar2[Im k^]2+ 3rV4 < 1, whence 

(92) 

Thus we can replace (91) by the weaker estimate 

(3r2-2r-l)2 • 2r2(r2-l)2 + 3rAA < 1    , 

from which follows 

(3r-l)2(r-l)2+ 2(r+l)2(r-l)2 < l-3r^A £ lA    , 

Iro kA I   <  } 1 4 

9 \ 
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or,  finally, 

(93) (r-l)2[(3rn)2+8] < J 

We write r-l= £   and derive from (93) the inequality 

(94) €2+ £3 < ^ 

whence 

(9.0 €<^ 

Rearranging the terms ir  (85)  in a more suggestive notation, we must 

prcve that the equation 

(96) (l+kA)U+3£ )€ log£+(l-k4)(2+3£)(2+e)log(2+e) 

- bjk2 log b,k2 +8+2A.6 + 1262-{U+U€)k^ 

has no solutions in the region defined by (76),   (92), and  (95), when we 

use the principal branch of the logarithm.    From (92)  and  (95/ we obtain 

readily 

(97) Re|(l+k4)U+3€)€ log € X < 0    , 

(98) Re-((l-k4)(2*3£)(2*€)log(2+e)~l  < l/2       , 

and 

(99) |arg b-jk2 | =  | arg[2*66*3£2-(2+2 £ )kA]|  < TT/2 

By  (99) and the estimate  |b..j<l, we have 

(100) j^k2 lcgb^j   <f + J      , 

since 

(101) max      |x log xj • — 
0< x< 1 

Finally, it is clear that 

(102) Re ^8+2^£+12 £2-(^A€)kA V > 

L 
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Thus,  combining (97),   (98),   (100),  and  (102), we derive from  (96)  the 

absurd  inequality 

(103) 4 < \ + Y + \ <• 2.6       , 

which shows that (85) has, indeed, no relevant solutions. 

This finishes our proof that the case (ii) in the integration of the 

differential equation (32) does not actually arise, and thus, finally, we 

complete in every detail our proof of the original inequality {k). The 

tedious calculations required to bring us from the fundamental equation (85) 

determining b, to the contradiction (IO3) should not be allowed to obscure 

the basic value of the method, 

6.  Corollaries of the Main Theorem. 

Secause we know that (42) is the extremal function for the inequality 
! 
I (4), we can make variations in the large and derive a set of further inequalities 

by composition of suitable mappings. We carry out one example of this type 

here and establish the inequalities (7). 

We write the extremal function (42) in the form 

-3   -  + e"6 
(104)        t - Z+^L_ , ,2_ <3      «•.   . 

The boundary P  in the t-plane includes for this mapping the segment from 

-2 exp(-^ + —r-)  to *2  exp(-~ + ~7~).  The exterior of this segment is 

mapped onto the exterior of the circle of radius exp(-~ ) in the w-plane 

by the transformation 
. -3 

(105) t - w + ~- 

In the region lw|>exp(-p), we can consider the schlicht function 

#     b,e    b~e     be 
(106) g" « w+ — + -=-=— + —i 

2     3 w     w 
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where the numbers b are arbitrary coefficients of a schlicht function of 

the form (2). Through composition of the transformations (i04-)> (105),. 

and (106) we obtain outside the unit circle in the z-plane the schlicht 

funcx-ion 

#    b e"3+3ie"3  b.e"6-?ib e"6-2e"*6 • § 
(107)   g - z*-^—- + -1 i—; -+... 

2 z3 

Since g    is  a competing function for the  inequality (4),  the expansion  (107) 

yields. 

/ 

L 

(108)        Re J b e"6~3ib1e"'
6-2e"6+ | I < |* e~6 

3 

and the first inequality (7) is an immediate consequence of (108). 

In a similar fashion we can derive the second inequality (7) from the 

knowledge that (6), with n= 2, is the extremal function for the inequalit'r" 

|b0|<2/3. The chief interest in the inequalities (7) stems from the fact 

that, in the 3ense of the substitution (8), they become equalities for the 

Koebe function. 

The problem of maximizing b when ail the coefficients b of the schlicht 

function g(z) are real has a somewhat unexpected solution, due to the fact that 

the extremal function (104) does not have real coefficients. In the ease 

where the coefficients are real, routine application of variational methods 

leads to the same differential equation (32) which we obtained in the general 

case. One has only to make variations which are symmetric in the real axis to 

see this.  But since we found in Sections 3, 4> and 5 all the schlicht 

solutions of (32), and since (104) does not have real coefficients, we deduce 

that (6), with n= 3, is actually the extremal function maximizing b when all 

the coefficients b are real. On the other hand, rotation of (104.) through 

45" yields the function with real coefficients which minimizes b . Thus 
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v for real coefficients we have the peculiar result 

(109)        - \  -e"6 < b3 < | 

! 

» 

The exceptionally small difference in the size of the estimates on the left 

and on the right in (109) is quite remarkable. 

After our discussion so far, it would appear that the next problem 

in order of difficulty is to settle the truth of the conjecture |a. | < U 

for schlicht functions (l) inside the unit circle. Our success with the 

inequality (U)  would indicate that the most promising approach to this 

question lies through the study of equations analogous to (85) for the 

earlier coefficients a2 and a, of the extremal function. We are able here 

only to describe the nature of these equations. 

From the differential equation for the extremal function w= f(z) 

maximizing la.) with a. > 0, we can derive the identity 

(110)    f (1. . ^ >2a ,,2,1/2 J£ 

0   w w 

_ P ,1   .  2a2 . 2!2 4.0 *.<>-    *o" 24. 3a/2 dz 

L 

With a suitable constant of integration and with the integrals interpreted 

as indefinite integrals, (110) defines the extremal map w= f(z) implicitly. 

On the other hand, if we integrate over two corresponding closed paths in 

the z~plane and in the w-plane, (110) becomes merely a numerical equation. 

Furthermore, by Gauchy's theorem the closed paths need not correspond 

according to the map, provided their topology relative to the roots and the 

poles of the expressions in parentheses is the same. Let w, and w_ be the 

zpros of the integrand on the left in (110) and let z.., z2, z , z~ , and 

z,= z,  be the zeros of the integrand on the right, with |z.|<l, Iz0/<1. 
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We obtain two equations, independent of the conformal map w= f(z), for &2 

and a, if we choose as the contours of integration in (llO) loops around 

0 and w. and around 0 and z.., or loops around 0 and w2 and around 0 and z^. 

In order to discuss effectively these two complex equations for a2 and a_ 

it would first be necessary to generalize and refine preliminary estimates 

on a2 and a_ of the type (9l). 

Finally, we wish to point out that the geometrical analysis of Section 

2 would lead rather easily to the result | a.|< 4 if it were possible to 
4 — 

establish first even such a simple condition of symmetry for the extremal 

function as arg a = arg a2 = 

There is a problem related to coefficient inequalities for the schlicht 

j functions (2) which is concerned with certain diameters D associated with 

a connected bounded closed set P. We define 
2 

(111)        DQ = max[ 77 11.-1 | ]n(n"l) 

for all choices of the n points t. lying in the continuum P.  The number 

D? is the usual diameter of the set P, and it can be shown that as n—>• co 

the n  diameter D approaches the outer mapping radius, or transfinite 

diameter, e" of P. We are interested in the problem of determining a set P 

which has, for a prescribed value of the outer mapping radius e^', the largest 

possible value of D [2, 61.  That such an extremal set P exists is an easy 

consequence of the theory of normal families of analytic functions. 

It is well known that D2 is a maximum when P is a line segment with 

end-points t. and t2.  We shall give a new proof here that, for &  = 1, 

D^ is a maximum when i consists of three equally spaced rays from the 

origin out to the three cube roots of U,   in which case t.. , t„, and t_ lie 
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at these cube roots. 

It takes only a routine application of variational methods to show 

that the analytic function p(t) whose real part is the' Green's function of 

the exterior of the extremal set C  maximizing D satisfies the differential 

equation [6] 

VVt, 
(112) (tr = 7i (t-t1)(t-t2)(t-t3) 

Furthermore, there is no loss of generality if we assume that P  has been 

rotated and translated so that 

(113) v w° •o, > 0 . 

Thus i consists of three analytic arc3 which fork from the origin under 

angles of 120 and terminate at t,, t2, and t . The problem is to find L.,, 

tp, and t_. 

We can find equations for t,, t2, and t, by noticing that the Green's 

function vanishes on H and hence vanishes at 0, t,, t~, and t,. Thus, in 

particular, 

0.1/) Re tl/2dt 

0
J  [(t-t1)(t-t2)(t-t )] 

-77^ = Re(p(b])-p(0)Y - 0 , 

where vie are allowed to integrate along the segment 0<t< t, .  It follows 

from (IL4) that the integrand must be pure imaginary for at least one value 

t of t between 0 and tn. Hence 
o 1 

(liO Im {to-(t2+t3)to+t2t3} = °      ' 
or,  since t?

+t. = -t,  < 0, 

(116) Ira t2t. = 0 
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The relation (ll6), together with (113), implies that t0=t_, unless t„ 

and t_ are both real, a case which is easily excluded from the maximum 

problem by direct calculation.  Thus t, lies on the perpendicular bisector 

of the segment joining t9 and t , and since either ox the points t? or t_ 

could as easily have been chosen to be the one lying on the positive, real 

axis, we deduce that t., t_, and t are the vertices of an equilateral 
i.      A, i 

triangle whose center lies at the origin. 

From the normalisation 6^=1 we now find that + ., tp, and t_ are, indeed, 

the cube roots of L,  and (114-) shows that • consists of three line segments 

joining these roots to the origin. This proof illustrates how simply conditions 

of the form (114.) can sometimes be treated, even when they involve elliptic 

integrals. 

It can be shown that the four rays from the origin to the fourth roots 

of U  do not compose the extremal set maximizing D..  The proof is too involved 

to present it profitably here, since the outcome is negative. The construction 

of a counter-example consists in applying the variation 

(117) t*-f*f- 

+.« fhQ  fourth roots of L  with D snisll -ositivs value of O  and developing 

in powers of p  the outer mapping radius and the fourth dia:neter of the 

continuum through the varied points which has the smallest possible outer 

radius. Letting p ~*0,  we find from this devexopment that the varied 
-tf 

continuum has a larger value of D,e  than the original svmmetric fork had. 
H 

I 
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